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4-3 direction subdivision combines quad and triangle meshes. On quad submeshes it applies a
4-direction alternative to Catmull-Clark subdivision and on triangle submeshes a modification of
Loop’s scheme. Remarkably, 4-3 surfaces can be proven to be C1 and have bounded curvature

everywhere. In regular mesh regions, they are C2 and correspond to two closely-related box-
splines of degree four. The box-spline in quad regions has a smaller stencil than Catmull-Clark
and defines the unique scheme with a 3 × 3 stencil that can model constant features without

ripples both aligned with the quad grid and diagonal to it. From a theoretical point of view,
4-3 subdivision near extraordinary points is remarkable in that the eigenstructure of the local
subdivision matrix is easy to determine and a complete analysis is possible. Without tweaking
the rules artificially to force a specific spectrum, the leading eigenvalues ordered by modulus of all
local subdivision matrices are 1, 1

2
, 1
2
, 1

4
where the multiplicity of the eigenvalue 1

4
depends on the

valence of the extraordinary point and the number of quads surrounding it. This implies equal
refinement of the mesh, regardless of the number of neighbors of a mesh node.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: surface representation, splines; I.3.6 [Com-
puter Graphics]: graphics data structures

General Terms: Algorithms

Additional Key Words and Phrases: Subdivision, Geometric Modeling, CAD, Curves & Surfaces

1. INTRODUCTION

Tensor-product surface constructions are known to exhibit aliasing and oscillation when
geometric features are not aligned with the parameter lines (see, for example, the surfaces
labeled CC in Figure 1). In fact, all control-mesh based schemes, whether spline-based
or subdivision-based, are sensitive to the alignment of features with the mesh lines due to
the shape (of the support) of the, finitely many, associated basis functions. However, for
tensor-product schemes, the lack of constancy in the direction diagonal to the tensor-grid,
is particularly noticeable: by raising a sequence of control points along the diagonal, an
artist, focusing on geometry and unaware of underlying basis functions, may well expect to
see a constant ridge rather than the sequence of camel humps arising from tensor-product
constructions (Figure 1). In practice, such lack of directional monotonicity forces design
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Fig. 1. Both the input control nets are planar except for the raised interior diagonal nodes whose values are
displayed. Catmull-Clark (CC) subdivision exhibits ripples, 4-3 subdivision does not.

artists to lay out meshes carefully, avoiding complex joints altogether or adding features as
displacement maps. To help the designer, a number of modifications of the basic subdivi-
sion paradigm have been proposed. These range from changing subdivision rules locally,
as part of a global iterative process [Kobbelt 1996; Kobbelt and Schröder 1998; Diewald
et al. 2002], to pulling and cutting the control net after sufficient refinement [Biermann
et al. 2002]. A restriction of the designer’s freedom was lifted without changing the basic
simple subdivision paradigm in [Stam and Loop 2003]. This scheme combines [Catmull
and Clark 1978] and [Loop 1987] with a C1 transition rule, i.e. allowing the designer to
freely place quadrilaterals and triangles (quads and tris) in the control net. [Levin and
Levin 2003] even gives tools and an explicit scheme to join quad and tri subdivision C2

across an (infinite) edge. 4-3 subdivision also combines quads and triangles but with dif-
ferent underlying subdivision rules. An example is shown below in Figure 2.

x3

Fig. 2. 4-3 subdivision refines a mixed mesh of 4-sided and 3-sided facets. (left) Input control net and limit
surface. (right two) Limit surface scaled 3 times with and without the refined control net.

A third, unwanted property is that, depending on the valence (= the number of neighbors)
rather than the geometry, neighborhoods of points contract at different speeds. This lack
of equi-contraction creates sharp or flat features in the refined tessellations as illustrated
in Figure 3. The dual C1 scheme [Doo and Sabin 1978] showed that equi-contraction,
or, equivalently, sub-dominant eigenvalues of 1

2 independent of valence, can be achieved
without unduly complicating subdivision formulas.

4-3 subdivision matches the advantageous features both of [Stam and Loop 2003] and
[Doo and Sabin 1978] by smoothing quad-tri meshes, up to second order in regular regions
(in fact, with bounded curvature everywhere) and guaranteeing equi-contraction with sim-
ple rules. The scheme prevents undesirable ripples in diagonal directions without the dras-
tic changes to the subdivision paradigm that separation of the mesh or iterative solution of
variational problems represent: 4-3 subdivision is a combination of simple, fixed subdi-
vision rules, that apply to a quad-tri mesh, avoid the diagonal artifacts of tensor-product
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4−3 Loop

Fig. 3. Contraction of 4-3 subdivision by 1/2 contrasted with Loop’s subdivision.

subdivision and provide equi-contraction and bounded curvature everywhere, including
4-3 transitions from a quad to a tri net and at extraordinary nodes.

The 4-3 rule for transition between quad and triangular sub-meshes is simple, because
both the quad and the tri bases of 4-3 subdivision are almost identical box-splines1 of
degree four [de Boor et al. 1993]. Indeed, the matrices A3 and A4, whose rows indicate
directions of averaging control points, differ in only one entry. By contrast, A3 and ACC

differ markedly:

[
dir1
dir2
...

]

︸ ︷︷ ︸

A

[
1 0
0 1
1 1

−1 −1

]

︸ ︷︷ ︸

Amidedge





1 0
−1 0

0 1
0 −1
1 1

−1 −1





︸ ︷︷ ︸

A3





1 0
−1 0

0 1
0 −1
1 1

−1 1





︸ ︷︷ ︸

A4







1 0
−1 0

1 0
−1 0

0 1
0 −1
0 1
0 −1







︸ ︷︷ ︸

ACC







1 0
0 1
1 1

−1 −1
1 0
0 1
1 1

−1 −1







︸ ︷︷ ︸

A4−8

The box spline subdivision rules corresponding to A3 are the ones modified in [Loop 1987]
to yield smoothing rules for general triangulations.

Choosing the box spline defined by A4, in place of ACC used in Catmull-Clark sub-
division, requires some justification since the piecewise bicubic, tensor-product spline
(NURBS) representation underlying Catmull-Clark subdivision is considered by some as
the ‘bedrock of geometric modeling’. First, in the scenario of interest, quadrilateral and
triangular meshes are combined and therefore a uniform tensor-product representation is
sacrificed ab initio. Second, the A4 spline is also a polynomial spline, in fact of lower
degree than the bicubic ACC spline (see Figure 6 for its piecewise Bézier form) but just as
smooth and has a smaller subdivision stencil! Finally, and this is a major point for graphics
modeling, the A4 spline avoids undesirable ripples in more directions than tensor-product
bicubic splines. The A4 directions yield C2 box-splines on quadrilateral meshes. It may
be viewed as a compromise between the not-so-smooth, C1 box-spline corresponding to
Amidedge of the simplest surface subdivision [Peters and Reif 1997; Habib and Warren 1999]
and the overly smooth C4 box spline A4−8 of 4-8 Subdivision [Velho and Zorin 2001] that
doubles up the directions of Amidedge. Each of these three representations, Amidedge, A4 and
A4−8 splines are linearly dependent or, from the modeling point of view, ‘overcomplete’.
That is, they can represent a given function with different sets of coefficients. Specifically,

1The fundamental box-spline subdivision algorithm in two variables inserts zeroes at the half-integer locations
and scales the initial values at the integer locations by 4, and then averages the values in the directions given by
the A matrix.
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A4 box splines reproduce all degree three polynomials in two variables. But, in case the
modeler does not manipulate the mesh directly but wants to fit the mesh by interpolation
to given data, the modeler would have to select a(n energy) minimization criterion in ad-
dition to the position constraints to obtain a unique solution. Remarkably, by Lemma 3.2,
A4 induces the unique symmetric 3 × 3 stencil (the size of the Catmull-Clark stencil) that
preserves a constant ridge in any of the two Cartesian, axis-aligned and quincunx, diagonal
directions.

This paper addresses two potentially distinct audiences. On one hand, the examples in
Section 4 and the short statement of the algorithm in Section 2 are a guide for implemen-
tation and use of the scheme. On the other hand, Section 3 fully analyses the scheme with
respect to shape and smoothness.
• The analysis of diagonal oscillations establishes A4 subdivision as the only one of its
stencil-size to be free of ripples.
• The analysis of the 4-3 transitions largely follows [Levin and Levin 2003], but has a
small modification that allows us to prove bounded curvature.
• The analysis at the eon proves C1 continuity at an extraordinary point surrounded by an
arbitrary combination of triangle- and quad-based subdivision schemes.
In the process, eigenvalues and eigenvectors are displayed that are helpful for the imple-
mentation of limit points and limit normals.

1.1 Closely related literature

The shape of Catmull-Clark subdivision surfaces was already analyzed in [Doo and Sabin
1978], globally faired in [Halstead et al. 1993], locally modified by explicit crease rules
[DeRose et al. 1998], locally edited [Khodakovsky and Schröder 1999] and made to match
prescribed normals by perturbation of the control net [Biermann et al. 2000]. The algorithm
has been factored into micro-steps [Stam 2001; Zorin and Schröder 2001], modified to
yield surfaces of bounded curvature [Sabin 1991] and blended with other rules to obtain
continuous curvature [Prautzsch and Umlauf 1998; Biermann et al. 2000]. We will factor
during the analysis (Section 3) and blend near extraordinary points (Section 4).

The midedge scheme’s [Peters and Reif 1997; Habib and Warren 1999] 8-fold second
largest eigenvalue 1

4 for valence 3 motivates the exhaustive analysis of linear, stationary
C1 algorithms based on the Jordan canonical form in [Reif 1999]. Our analysis is largely
based on the simpler analysis of standard cases in [Peters and Reif 1998] and [Umlauf
1999].

In [Iske et al. 2002], Malcolm Sabin started a list of shape artifacts of subdivision
schemes and pointed out that the fractal support of the basis functions of various inter-
polatory subdivision schemes as well as

√
3 subdivision [Kobbelt 2000] implies that the

sum of translates of the basis functions in any direction will exhibit ripples.
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2. 4-3 SUBDIVISION

A non-boundary node of the control net is either
a regular node, i.e. a node surrounded by either four quadrilaterals or six triangles;
a 4-3 transition node, surrounded by two quadrilaterals followed by three triangles; or
an extraordinary node (short eon) converging to an extraordinary point (eop) under subdi-
vision.
In each subdivision step, the number of eons stays constant, the number of boundary nodes
and 4-3 transition nodes doubles and regular nodes quadruple. The algorithm is as follows.

Input: Control net with 3- and 4-sided facets.
Output: Control net with four times as many 3- and 4-sided facets.
The positions of new nodes are computed as a linear combination of the old nodes with
weights summing to one. It is convenient to display the weights, without the normalization
to one, as the stencils in Figure 4. For example, the rule (1a) in column (1) and row (a)

1
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4
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Fig. 4. Stencils for 4-3 subdivision: row (a) gives rules for new nodes replacing old nodes, row (b) show new
nodes associated with edges and faces. The columns correspond to: (1) A4 subdivision, (2) 4-3 transition, (3)
A3 subdivision, (4) eon subdivision (vertex with n neighbors). Here βi := 1

n
(1 + 2 cos 2πi

n
), β := 1−α

n
and

α is free to choose in the interval [ 1
4

.. 3
4
]. The recommended values are α(n=3) = 3/8, α(n=4) = 1/2 and

α(n>4) = 3/5. Near eons, rule (4b) slowly takes over from rules (1b,2b,3b) as the subdivision level increases
(see text).

says that the new position of a node surrounded by four quads is 4
8 the old position plus 1

8
of each direct neighbor. The circle indicates the logical correspondence of the new node to
an old node. In row (b) a • indicates correspondence of the new node to an edge or facet.
For example, (2b) second column, bottom determines the position of a new node on a 4-3
transition edge as 6

16 times the neighbors on the edge, 2
16 times the third triangle neighbor

and 1
16 times the remaining quad neighbors.

Note that new nodes on edges attached to an eon can be defined in two ways; by one of
the regular rules (1b), (2b) or (3b), or, alternatively, by rule (4b). In the first subdivision
steps σ ≤ σ0, say σ0 = 3, we average σ−1

σ times (4b) with 1
σ times the regular stencil.

After subdivision σ0, new nodes on edges attached to an eon only use (4b). All stencils
are normalized to sum to 1. For example, the weights of (4b) need to be scaled by 1/4.
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Since (4b) moves nodes towards the affine image of a circle, this gradual introduction better
preserves intended asymmetric features around the eon.

Boundary rules and crease rules are easily implemented (Figure 24) along the lines of
[Biermann et al. 2000] and [DeRose et al. 1998].

3. PROPERTIES

For the analysis of 4-3 subdivision, it is convenient 2 to break each subdivision step into
two stages. First, the mesh is refined by adding nodes whose position is determined by
(bi-)linear interpolation (see top row of Figure 5). Then the refined mesh is smoothed out
by a second step that requires only one stencil for each mesh type. For example, lower left,

.. . .
.

. .
.

.
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1
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2
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0

1

1

1

2

1

1

1

1 0 0
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Fig. 5. Factored stencils for 4-3 subdivision. (Bi-)linear interpolation (refinement, top) followed by smoothing
on the refined mesh (bottom). Here ᾱ := 2α − 1, βi and β as in Figure 4.

to compute the A4 box-spline node after bilinear interpolation, the node is replaced by the
average of its four neighbors. By comparison , the smoothing stencil for Catmull-Clark

subdivision after bilinear interpolation is
[

1 2 1
2 4 2
1 2 1

]

/16.

3.1 Analysis at regular nodes

According to [de Boor et al. 1993] (see also [Prautzsch and Boehm 2002; Warren and
Weimer 2002]), a box-spline is defined by and can easily be analyzed via its matrix of
convolution directions A: both A3 and A4 yield degree 4, C2 box-splines that reproduce
all degree 3 polynomials in two variables. The sum of the entries in each column of the A
matrix is even, and hence the shift of the box-spline mesh under subdivision is a multiple of
the refined mesh spacing, a property often called ’primal’. The support or footprint of the
A3 box-spline is hexagonal and the one of the A4 box-spline is octagonal. By comparison,
the ACC spline is also primal, C2 and reproduces all degree 3 polynomials, but is of degree
6 (bi-cubic) and therefore has the larger stencil and support shown below, on the right:

2For a run-time efficient implementation, such factoring is generally not a good idea, since the refined nodes
now need to be visited twice and, without smart caching, two copies of the refined mesh have to be stored. This
trade-off is a special case of a spectrum of trade-offs. One extreme, with a large stencil, is the pretabulation of
the rules for limit points corresponding a fixed number of subdivision steps. The other extreme, with a minimal
stencil, is the complete factorization into (box-spline) averaging steps. [Peters and Reif 1997; Stam 2001; Zorin
and Schröder 2001].
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Fig. 6. Conversion from box-spline to Bézier form, for A4 (top) and A3 (bottom). The stencils (to be nor-
malized to sum to 1) are shown on the right, the sub-meshes on the left show the logical position of the Bézier
coefficients (represented by their subscripts on the shaded domain) with respect to the box-spline coefficients
(represented as circles). The stencils on the right are arranged in the same logical position. Each lists the weights
such that the weights times the corresponding box-spline coefficients yields the Bézier coefficient at that logical
position. For example, the A4 Bézier coefficient with subscript 220 is 16

192
times the four nonadjacent corner

nodes plus 64
192

times the two direct neighbors. The A3 Bézier coefficient with subscript 220 is 8
24

times the

nodes to the left and right, plus 4
24

times the node above and below.
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Figure 6 gives the change of basis for writing A3 and A4 splines in Bézier form. As
mentioned before, A4 splines (as well as Amidedge and A4−8) have direction vectors that
are not unimodular and hence the representation is overcomplete [de Boor et al. 1993].
Specifically, the two (bi-infinite) coefficient sequences

−1 +1 −1 +1

+1 −1 +1 −1

−1 +1 −1 +1

+1 −1 +1 −1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

both generate the zero function and oscillations that include the ±1 pattern on the left
damp out. This creates both problems and advantages. Potential problems are that (P1)
damping reduces a designers change to the surface; and (P2) fitting routines that rely on

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



8 · J. Peters and L.J. Shiue

0 0

− + − +000
00 0 0 0 0 0

−+−+ 000

0

0 0 0 0 0 00
−+−+ 0 0 0

0 000000

− + − +

Fig. 7. A regular quad-grid with height values +1, 0 and -1 (left) results in the shape on the right. Conversely,
the interpolant, minimizing the 2-norm of coefficients, to the data sampled from the surface on the right is the
regular quad-grid with values +1, 0 and -1.

inverting point data do not have a unique solution. In the latter case, we need to select an
approximant that best balances matching values and minimizing some ‘energy’. Note that
lack of uniqueness does not restrict the designer further. Since A4 reproduces polynomials
of degree three, intentional oscillations can still be modeled. For example,the coefficient
choice in Figure 7 will model the oscillations that might have been intended by the ±1
pattern above. Advantages of the overcompleteness are that (A1) designers have different
options of expressing a given shape, and (A2) coefficients can be chosen to best match
a certain application, say to reduce noise. For example, [Ron and Shen 1998] construct
frames for wavelet decomposition from 4-direction box splines. The key advantage of
using A4 is formalized in the following definition.

Definition 3.1. A subdivision scheme is ripple-free in the direction d, if a control net
with constant first differences in the direction d results in a surface whose first derivative
in the direction d is constant.

We prove that, among subdivision schemes with a small stencil size, the four-direction
spline is unique in avoiding ripples. Note that, since not every 3 × 3 smoothing stencil
corresponds to a box spline, differentiation of box splines can only establish the trivial
direction of the proof: that 4-direction box spline subdivision preserves diagonal ridges. In
fact, the proof eschews differentiation altogether and works only with differences.

LEMMA 3.2 (RIPPLE-FREE). A4-subdivision is the only subdivision with 3× 3 stencil
that is symmetric and ripple-free in all of the directions [ 1

0 ], [ 0
1 ], [ 1

1 ], [ 1
−1 ].

PROOF. The first and more difficult part of the proof is to prove uniqueness. It suffices to
consider a finite section of an infinite, diagonally symmetric, shift invariant ridge pattern
as shown on the left in the display below. Specifically, we normalize by subtracting a
constant and scale so that the second off-diagonal layer is zero, the diagonal is 4 and
0 ≤ a < 4. Entries that do not enter the calculation are not shown. Since only one possible
smoothing stencil preserves the ridges constant differences in the diagonal direction, we
need not consider unsymmetric ridges at this point. Also, since all computations are local,
it suffices to consider a finite section.

Due to symmetry, the 3×3 smoothing stencil has the form

[
γ β γ
β α β
γ β γ

]

, where α+4β+4γ =
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1. and we compute

0 a 4

0 a 4 a

0 a 4 a 0

a 4 a 0

4 a 0

→bilin

0 w a b 4
w v b b b

0 w a b 4 b a
w v b b b v w

0 w a b 4 b a w 0
w v b b b v w
a b 4 b a w 0
b b b v w
4 b a w 0

→smooth

d′ c e′
d c e c

d′ c e′ c d′
d c e c d

d′ c e′ c d′
d c e c d

d′ c e′ c d′

c e c d
e′ c d′

The values after bilinear refinement (middle) are b := 2 + a
2 , v := 1 + a

2 , w := a
2 . After

smoothing, we have

e − e′ = (bα + 4βb + 2(4 + a)γ) − (4α + 4βb + 2(b + v)γ)

= α(4 − b) + 2γ(b − 4 + v − a) = α(2 − a
2
) − 2γ.

Since the diagonal remains monotone if and only if e = e′ and the subdivision weights γ
and α do not depend on the data, here “a”, we have α = 0 and γ = 0 and hence β = 1

4 ,
i.e. the A4 rule.

Conversely, any unsymmetric ridge with profile (traversal cut) height 〈y−2, y−1, y0, y1, y2, y3〉
can be decomposed into the linear function (1− t)y−2 + ty3 and the two symmetric ridges

〈0, z1, z2, z1, 0, 0〉, z1 := −4

5
y−2 + y−1 −

1

5
y3, z2 := −2

5
y−2 + y0 − y2 +

2

5
y3;

〈0, 0, z3, z4, z3, 0〉, z3 := −1

5
y−2 + y2 −

4

5
y3, z4 :=

2

5
y−2 − y−1 + y1 −

2

5
y3.

It is therefore sufficient to consider symmetric ridges. If β = 1
4 and α = γ = 0, we have

A4 subdivision and c := 7
4 + a

2 , and d = d′ := 1 + a
2 . We subtract d and scale to 4 to

restore the initial ridge pattern and establish invariance. Invariance of axis-aligned ridge
in the other three directions is similarly verified and the smoothness of the box-spline then
translates constant differences into constant first derivatives.

The box splines corresponding to Amidedge and A4−8 are also based on four directions
of averaging. Amidedge has the best shape preservation due to its minimal stencil, but is
only C1. By contrast, A4−8 is C4 apart from eons and that smears out features. Ripple-
freeness of A3 along its three averaging directions follows readily from the symmetries of
its stencil. The stencil entries are not unique since any radially symmetric stencil will do.
Lemma 3.2 shows that we cannot hope for ripple-freeness of A3 in the direction [1,−1].

3.2 4-3 transition

The key to properties of the subdivision surface at a point is the local subdivision matrix
S that maps the control net Xm of the mth level of subdivision to Xm+1 at level m +
1: Xm+1 = SXm [Doo and Sabin 1978; Reif 1999] The analysis of the transition from
a quad to a tri net is both more complex and simpler than the analysis at an eon: on
one hand, the neighborhood of a line segment needs to be analyzed, as opposed to just a
single point; on the other hand, the subdivision matrix at a transition node, S43, is easily
determined, on a unit-spaced subnet X corresponding to [−3, 3]× [−3, 3]. The eigenvalues
of this subdivision matrix, ordered by modulus, are 1, 1

2 , 1
2 , 1

4 , 1
4 , 1

4 , . . .. The stencil of the
left eigenvector corresponding to the eigenvalue 1 is shown in Figure 8, left. Normalized
so that they sum to one, the stencil weights multiply the corresponding mesh points to
yield the limit point on the 4-3 transition. The two left eigenvectors of the eigenvalue 1

2

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



10 · J. Peters and L.J. Shiue

yield the tangent direction stencils shown in Figure 8, right. Computing the two linear
combinations (summing to zero) yields two vectors whose cross product is the normal at
the limit point. The two right eigenvectors to the eigenvalue 1

2 are plotted as an (x, y)-
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Fig. 8. Left eigenvector stencils corresponding to eigenvalues 1, 1
2

, 1
2

.

pair in Figure 9. The y-axis is the 4-3 transition line. Analogous to the characteristic
map [Reif 1995], the eigenvectors span a characteristic strip of functions on either side of
the transition line. The domain of these two functions is indicated as shaded quads and

Fig. 9. Right eigenvectors corresponding to eigenvalues 1
2

, 1
2

displayed as (x, y)-pair.

triangles. By transforming them into Bézier form with the help of the formulas in Figure 6,
the functions are easily shown to be regular and injective. The eigenvectors corresponding
to the eigenvalue 1

4 correspond to elliptic and hyperbolic eigenfunctions as required of a
flexible scheme [Peters and Reif 2004].

To analyze the continuity across a whole segment of the 4-3 transition, we apply the
ideas of [Levin 2003; Rioul 1992] and largely follow the explicit procedure given in Sec-
tion 3 of [Levin and Levin 2003]:
(1) Select a (minimal) subset L of nodes that define, via subdivision, a segment of the tran-
sition curve between two nodes.
(2) On L, determine the subdivision matrices S43 and S+ for either endpoint of the seg-
ment.
(3,4) Apply to S+ a similarity transformation that diagonalizes S43 (e.g. using the eigen-
vectors V of S43).
(5) To prove Cm continuity, remove the first

(
m+2

2

)
rows and columns of the transformed

matrices to get submatrices Y and Y +. Bound the joint spectral radius of Y and Y + above
by the decreasing sequence in k:
ρ[k](Y, Y +) := (max{‖ZkZk−1 · · ·Z1‖∞ : Zi ∈ {Y, Y +}, i = 1..k})1/k.

In [Levin and Levin 2003], the procedure verifies rules for a C2 transition between A3

and ACC splines based on second-order quasi-interpolants. Since the second-order quasi-
interpolant for A4 and ACC splines are identical, namely Qf := f − (D02 + D20)f/6, we
could adapt those rules to obtain a C2 transition between A4 and A3 splines. We chose
not to because we do not want to have special rules for nodes adjacent to 4-3 transition
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edges. Modifying adjacent layers makes the code slightly more complex and the analysis
near the eons considerably more complex. (The analysis of eons is not a concern in [Levin
and Levin 2003]). Since the second-order quasi-interpolant for A4 and ACC splines are
identical, the argument in [Stam and Loop 2003] shows that y2 is not reproduced by the
4-3 transition rules. Figure 10 illustrates this in terms of sectional curvature. Nevertheless,
we can prove first-order smoothness and boundedness of the curvature.

PSfrag replacements
x

PSfrag replacements

x

PSfrag replacements

x

PSfrag replacements

x

Fig. 10. Control nets and corresponding sectional curvature in the x direction.

LEMMA 3.3 (SMOOTHNESS ACROSS 4-3 TRANSITIONS). Across 4-3 transitions, ex-
cluding degenerate control nets and eons, 4-3 subdivision surfaces are C1 and have bounded
curvature.

PROOF. We recall that the eigenvalues of S43 are 1, 1
2 , 12 , 1

4 , 1
4 , 1

4 , 1
8 ,... and that constant and

linear functions are reproduced by the eigenfunctions corresponding to 1, 1
2 , 12 . This implies

C1 continuity and bounded curvature at every limit point corresponding to an original mesh
node. To make statements about the points in between, along the 4-3 transition curve, we
need to analyze the pair of matrices S43 and S+. S+ is determined just like S43 but with the
indices of the nodes modified by the subdivision matrix shifted by one in the y direction.
All combinations of these two matrices generate the points on a segment x = 0, y = [0..1]
of 4-3 transition.

We essentially apply to S+ the eigen-decomposition V −1S43V that diagonalizes S43.
Since V ∈ R

56×56 corresponding to the integer grid L := [−3, 3] × [−3, 4] is not of full
rank, we form V from the six eigenvectors corresponding to the six leading eigenvalues
plus the nullspace of the eigenvectors. This yields

V −1
S43V =









1
1
2

1
2

d
Q43









, V −1
S

+V =









1 m1 m2 ∗ ∗
1
2 0 ∗ ∗

1
2 ∗ ∗

d ∗
Q+









, d :=
1

4





1
1

1





where Q43 and Q+ are of size 50 × 50. To establish C1 continuity, step 5 of the recipe of
[Levin and Levin 2003] suggests computing

ρ[k](Y 43, Y +) := (max{‖Y εkY εk−1 · · ·Y ε1‖∞ : εi ∈ {43, +}, i = 1..k})1/k,

for increasing k and

Y 43 := [ d 0
0 Q43 ], Y + := [ d ∗

0 Q+ ].

This yields a decreasing sequence and the spectral radius ρ(Y 43, Y +) is equal to
limk sup ρ[k](Y 43, Y +). However, convergence is poor and, due to numerical roundoff,
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12 · J. Peters and L.J. Shiue

this approach would at best yield an upper bound, close to but above the number 0.25 that
is required to show boundedness of the second derivative. So, instead, we observe that

Y εkY εk−1 · · ·Y ε1 =

[
dk ∗
0 Q̃

]

Q̃ := QεkQεk−1 · · ·Qε1 , εi ∈ {43, +}, i = 1..k.

Since we know d exactly, we can simply compute a decreasing upper bound on the joint
spectral radius of Q43 and Q+. Already3 ρ[11](Q43, Q+) is less than 0.25 and therefore
ρ(Y 43, Y +) = max(d) = 0.25. For the individual component functions ρ(Y 43, Y +) <
0.5 implies C1 continuity and since the Hölder continuity of the derivatives is −1 −
log2(ρ(Y 43, Y +)) = 1, the second derivative and hence the curvature are bounded. Since
we are dealing with parametric manifolds, we have to additionally concern ourselves with
the injectivity of the characteristic strip, (which is not a consideration in the Levin pro-
cedure). Above, injectivity of the characteristic strip has only been claimed for the limit
points of original transition nodes. However, looking at the structure of V −1

S
+V in detail,

the eigenvectors of S+ corresponding to 1
2 are simply v1 + m1v0 and v2 + m2v0 where vi

is the eigenvector of S43 corresponding to the ith eigenvalue, ordered by size. That is the
characteristic strip is simply shifted and hence the injectivity is inherited.

Fig. 11. A straight ridge across the quad-tri transition edge (the quad-diagonal is continued into the triangle
mesh) with control points at equal height is marked by a difference in height.

Since the A3 and the A4 box spline are of different height, the height of a ridge changes
if we choose the same control point height on both sides and for the 4-3 transition node
(Figure 11). So why do we not observe height variations across the 4-3 interface, say in
Figure 19? The answer is that both A3 and A4 splines and their average, the 4-3 transition
rule, reproduce linear functions. Setting, say, three parallel ridges to 1 results in the same
height along the ridge across the 4-3 transition.

3.3 Extraordinary points and nodes

Due to the arbitrary combination of triangles and quadrilaterals among the n facets that
surround an eon, the analysis of 4-3 subdivision faces two fundamental technical difficul-
ties not encountered in the standard, symmetric setting. First, we cannot (directly) apply
discrete Fourier transform techniques. Second, the n surface pieces, that join to form an
annulus surrounding the eon (Figure 13, left), are not piecewise polynomial unless the
facets are either all triangles or all quads. Remarkably, a full analysis of the spectrum and
the leading eigenvectors is nevertheless possible.

3To get faster convergence, it pays to use the first 10 eigenvectors, carefully omitting the dependent one.
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Fig. 12. Correspondance of the submesh surrounding an eon (extraordinary node, left) and the column structure
of the subdivision matrix S (right). White areas in S correspond zero entries. The nodes represented as hollow
circles in the third ring (left) are needed to define a consistent surface annulus (see Figure 13); but they do not
contribute to the submesh that defines the refined annulus.

The s × s local subdivision matrix S transforms a portion of the net, surrounding the
eon, to an isomorphic net. To be useful for analysis, this local net must be large enough to
define a consistent surface annulus: that is the union of the annulus and its images scaled
by ( 1

2 )k, k = 1, . . . ,∞ covers the neighborhood of the eop and consecutive annuli join
without overlap. Let n be the total number of facets surrounding the eon and n� ≤ n the
number of the quads among these facets. Then s := 1 + 6n + 3n� is sufficient to define
a consistent surface annulus for analyzing the eigenstructure. (The corresponding mesh
nodes are shown as bullets in Figure 13, left; since the direct neighbors of the eon have
special rules, one more ring has to be selected to write out annuli of the surface in Bézier
form.) The nodes can be ordered to yield a largely lower-diagonal S shown in Figure 12,
right: Apart from the submatrix M, the diagonal entries are eigenvalues, and, in decreasing
order, 1

4 , 1
8 , . . . , 0. The number of 1

4 eigenvalues equals n� and hence may be zero. The
properties of S depend crucially on those of M. M is defined in terms of the n×n matrices
E, C and I with entries

Eij :=
1

n
, Cij :=

2

n
cos

2π(i − j)

n
, Iij :=

{

1 if i = j

0 else,

and the n × 1 vector e defined by ei := 1. The following is easy to check.

LEMMA 3.4. E + C is a projection, i.e. (E + C)2 = E + C and

C
2 = C, Ce = 0, eet = nE, et

e = n, Ee = e, EE = E.

We also note that C is of rank 2 and E + C is of rank 3, i.e. E + C projects n points into a
plane. The simple eigenstructure of

M :=

[
(1 − α) α

net

e/2 1
4 (I + E + C)

]

is the key to the analysis.
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14 · J. Peters and L.J. Shiue

LEMMA 3.5 (EIGENVALUES OF M). For 0 < α < 1, M has the characteristic polyno-
mial det(M − λId) = (λ − 1)(λ − 1

2 )2(λ − 1
4 )n−3(λ − ( 1

2 − α)).

PROOF. For n = 3 the characteristic polynomial is easily computed and matches the
claim. For n ≥ 4, the rules of Lemma 3.4 yield µ(M) = 0, where

µ(x) := (x − 1)(x − 1

2
)(x − 1

4
)(x − (

1

2
− α)).

That is, µ is an annihilating polynomial for M, and therefore λ ∈ {1, 1
2 , 1

4 , 1
2 − α} for any

eigenvalue λ of M. The multiplicity of the eigenvalues then equals the rank deficiency of
M − λId.

If α 6= 1
4 , we show that the eigenvalues 1, 1

2 and 1
2 − α have multiplicity 1,2 and

1, respectively. The eigenvalue 1
4 must then account for the remaining n − 3 roots. By

elementary row and column operations,

rank

[
(1 − α) − λ α

net

1
2e ( 1

4 − λ)I + 1
4 (E + C)

]

= δλ6=1/2 + rank[(1 − 4λ)I + C]

where δλ6=1/2 is 1 if λ 6= 1/2 and 0 else. Since (1 − 4λ)I + C is a circulant matrix, its jth

eigenvalue is







2 − 4λ if j = 1,

3 − 4λ if j = −1,

1 − 4λ else.
For λ = 1 and λ = 1

2 − α, the matrix (1 − 4λ)I + C is of full rank n since all eigenvalues
are nonzero, while, for λ = 1

2 , the rank is n − 1 as claimed.
If α = 1

4 then

rank(M − 1

4
Id) = rank

[
1
2

1
4net

1
2e

1
4 (E + C)

]

= 1 + rankC = 3,

and the multiplicity of the eigenvalue λ = 1
4 is n − 2.

Remark: If we weigh the projection E + C with 1− ε and the interpolation I with 1 + ε
for ε ∈ [−1..1] then the eigenvalues of M are in the set {1, 1

2 , 1−ε
4 , 1

2 − α}; that is, for
ε 6= 0, in the absence of other 1/4 terms, the curvature would be either diverging or zero.

LEMMA 3.6 (EIGENVECTORS OF M). The leading left and right eigenvectors l0, r0

corresponding to the eigenvalue 1 and l
j , rj , j = 1, 2, corresponding to the eigenvalue 1

2

are

r
0 := [ 1

e
], r1 := [ 0

c
], r2 := [ 0

s
], l0 := [n, 2αe

t], lj = (rj)t,

where the ith entry of c is ci := cos( 2π
n i) and the ith entry of s is si := sin( 2π

n i).

PROOF. With Id the n+1×n+1 identity matrix, it is easy to check that l0(M− Id) =
0 = (M− Id)r0. Since (E+C− I)c = 0 and (E+C− I)s = 0 and (E+C− I)t = E+C− I,
also l

j(M − Id/2) = 0 = (M − Id/2)rj for j = 1, 2.

Since the entries of S to the right of M are zero, the left eigenvectors of S are simply
those of M followed by s − n − 1 zeros. Let Vi be the ith neighbor node of the eon
and V := [0, V0, . . . Vn−1, 0, . . . , 0]. The practical implication is that we can compute the
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.. . ...
Fig. 13. Extended sector: control net (see row 3 column 2 of Figure 15) and, shaded darker, a sector of the
characteristic map.

position of the eop as l0V and the normal direction at the eop as l1V × l
2V by applying

the stencils:
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We now prove the C1 continuity of the surface at the eop. Since the box-splines and the
4-3 transition are C1 and the eigenvalues of S decrease in the correct progression, we only
need to show that the characteristic map

φ : {1, 2, . . . , n} × ω ⊂ R
n×2 → R

2, ω := convex hull([ 1
0 ], [ 2

0 ], [ 0
2 ], [ 0

1 ]).

is regular and injective onto a consistent planar annulus [Peters and Reif 1998]4. The
characteristic map φ is defined by applying subdivision to the 2D control net (r1, r2) where,
for k = 1, 2, rk is a subdominant right eigenvectors of S corresponding to the eigenvalue
1
2 . Since, apart from M, the matrix S is lower-diagonal (see Figure 12), and since Lemma
3.3 yields the first n + 1 entries rk(`) = r

k(`) for ` = 1, . . . , n + 1, we can backsolve
for the remaining entries of rk in terms of the symbols ci and si. Then we look at three
consecutive sectors, each corresponding to A3 or A4 subdivision. There are eight possible
combinations and only two are redundant due to symmetry.

For each triple, we back-solve, using a symbolic solver such as Maple, and obtain the
nodes corresponding to one extended sector of nodes. An extended sector of nodes consists
of the nodes of the sector plus one layer of nodes from either neighbor sector (Figure 13).
Without loss of generality, after rotation and uniform scaling in both directions, we may in
the following assume that

(A) The node with index (1, 0) is d0 := [ 1
0 ] and (0, 1) corresponds to d1 := [ c1

s1 ].

By substituting cos( 2π
n i) for ci and sin( 2π

n i) for si for various n, we can draw the extended
sectors in Figure 15. Thanks to the small stencils of the scheme, such an extended sector

4Note that the trapezoidal domain ω is the same for A3 and A4 subdivision. As can be seen from Figure 6, for an
eon entirely surrounded by triangles ω maps to three polynomial pieces; for an eon entirely surrounded by quads
it maps to six polynomial pieces.
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Fig. 14. (left:) Node indexing. Nodes represented by ◦ are needed for defining the characteristic map φi only
if the corresponding sector is a quad. (right:) Domain grid after two refinements. One 4 × 4 subnet of 21 is
emphasized at (7/8, 9/8).

completely defines the restriction φk of φ to the kth domain ω:

φk : k × ω → Ωk ⊂ R
2, (k, u, v) 7→ (x, y) = φ(k, u, v).

We can now look at the (between 16 and 21) coefficients that define each type of φk . For
all 8 configurations and all n, j ∈ {−1, 0, 1} and i ∈ {0, 1, 2, 3}, we verify by inspection
(or range arithmetic) for c1 ∈ [− 1

2 ..1] and s1 ∈ [− 1
2 ..1] the following (cf. Figure 14).

(S1) The y-component of nodes with index (i, j) is j.
(S2) The x-component of nodes with index (i, j) is monotonically increasing.
After two subdivision steps (in symbols ci and si), we arrive at the refined mesh shown

in Figure 14, right. For every 4 × 4 subnet whose central quad overlaps the domain, we
compute the differences in the two axis directions, i.e. the i-differences bi+1,j − bi,j and
the j-differences bi,j+1 − bi,j .
(S3) All i-differences have a positive x component and all j-differences have a positive y
component. (This is not true without subdivision!)
We scale the i-differences so that they have the form [ 1

δ1
] and the j-differences as [ δ0

1 ]
(sketched as circles and boxes in Figure 16). For the range of c1 and s1, we check that the
following holds.
(S4) For all subnets not overlapping the boundary of the sector, |δi(n)| < 1, i.e. no convex
combination of j-differences is collinear with a convex combination of i-differences. For
subnets overlapping the sector boundary, we have to compute some differences as averages
of differences to account for 4-3 transitions and 3-4 transitions. Then, just as for interior
subnets, the differences fall into two half-cones that only overlap at the origin as illustrated
in Figure 16).
Finally, converting to Bézier form in the interior away from the sector boundaries, and
looking at the recursion as one sector boundary is approached, we find
(S5) along the boundary E := [ 0

1 ]..[ 1
0 ] of ω, subdivision generates polynomial curve seg-

ments that are monotone in the direction [ 1
−1 ] (i.e. do not fold back). With these observa-

tions, we can prove the main result.

THEOREM 3.7 (GLOBAL SMOOTHNESS AND CURVATURE BOUNDEDNESS). If 1
4 ≤ α ≤

3
4 then, excluding degenerate control nets, 4-3 subdivision surfaces are C1 and have
bounded curvature.
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Fig. 15. Control nets of the extended sector of the characteristic map for (from top) n = 3, 4, 6, 12 and (left to
right) the 8 possible sequences of a triangle or a quad with tri or quad neighbors. For n = 3, the eon is an interior
node. For n = 12, it is the lowest node.

PROOF. We first show injectivity of the characteristic map. We may assume (A). Since
rules (2a) and (2b) weigh both sides of a sector boundary equally, (S1) implies that φj maps
the domain boundary [ 1

0 ]..[ 2
0 ] on a segment of the (positive) x-axis. Since the 4-3 transition

rules are locally injective for generic data and (S2) implies that the data are generic, the
image of the domain boundary does not fold back onto itself. This argument holds for all
8 configurations so that any overlap of φi with φj for i 6= j is already detectable is a lack
of injectivity of φi. The proof therefore reduces to showing injectivity for each type of
extended sector.

The characteristic map is evaluated by subdivision rules 1,2,3, but not 4. As in [Peters
and Reif 1998; Umlauf 1999], we observe that, due to the underlying box spline basis
functions and rule 2, the derivatives of φi are a convex combination of the differences in
the directions d0, d1 of the extended sector net. By (S3), the two families of difference
vectors lie in half-cones strictly to one side of zero and by (S4) these half-cones do not
overlap, i.e. they only intersect at the origin (cf. Figure 16). Therefore any vector generated
as a convex combination of one family is linear independent from vectors generated by a
convex combination of the vectors of the other family. Since the vectors are non-zero, φ is
regular.

PSfrag replacements

d0

d1

Fig. 16. (right:) Non-overlapping difference half-cones.
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By (S5) and since 4-3 transition guarantees injectivity at the endpoints of E := [ 0
1 ]..[ 1

0 ],
φi is injective along the line segment E. Since φi([ 0

2 ]..[ 2
0 ]) is a scaled image of φi(E) and

since φi was shown above to be injective on the sector boundaries, φi is injective on all
four boundaries. The argument of Lemma 4.1 [Peters and Reif 1998] shows that if φi is
regular on ω and injective on the boundaries of ω, then φi is injective on ω. (The argument,
in a nutshell is: assume the map is regular and injective on the boundary but not injective
in the interior. Then one can trace a path of non-injective points to the boundary or the path
ends in a singular point. Either conclusion contradicts the assumption.)

For | 12 − α| ≤ 1
4 , the eigenvalues of S are always positive and, in descending order,

1, 1
2 , 1

2 , 1
4 , . . . , 1

8 , . . . where the multiplicity of 1
4 is n + n� − 3.

In particular, choosing α = 1/4 for n = 3 guarantees a descending sequence 1, 1
2 , 1

2 , 1
4 ,... of

eigenvalues for all n.
To rigorously establish the convex hull property, we define an alternative rule to (4a). Let

v∗ be an eon with direct neighbors vj , j = 0..n − 1, and wi the fourth node of a quad qi

with vertices v∗, vi−1, wi, vi. Rule (4a) computes the new eon as vnew
∗ := αv∗ +

∑

j βjvj .
Rule (4a’) computes the new eon as

vnew
∗ := αv∗ +

∑

j

βjvj +
1

16n

∑

qi

(wi −
vi + vi−1

2
)

PSfrag replacements

vi vi−1

wi

v∗

That is, for every quad facet i, we reduce the contribution of the two direct neighbors by
one half of the weight 1

16n given to wi.

LEMMA 3.8 (CONVEX HULL PROPERTY). The 4-3 subdivision surface lies in the con-
vex hull of its control points, if, for n > 3 and subdivision steps σ ≤ σ0, σ−1

σ times rule
(4a’) is added to 1

σ times rule (4a).

PROOF. All subdivision stencils in Figure 4 have entries summing to one, and they are
nonnegative except for some βi in rule (4b) if n > 3. (For n = 3 all entries are nonnegative
and we are done.) For n > 3, since 1

4 ≤ α ≤ 3
4 ,

βi ≥
−1

n
and β ≥ 1

4n
.

With the help of the masks and stencils of Figure 17, we can compute the contribution of
a node vi to node v0 after the first two subdivision steps. Here εi−1 = 2, if vi−1, v∗, vi

form the corner of a triangle and εi−1 = 1 if they form a corner of a quad. First, we show

(4b)(1b,2b,3b) (1b,2b,3b)(4b)

.
.

.
.

.
.

....
.

.
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Fig. 17. Contribution of vi to v0 after two steps of subdivision. Here β̃ := β − γi
32n

and some entries that will
strengthen the convex hull property, say for n = 4 and n = 5, have been left out.

that the contribution of vi to v0 after the second subdivision step, σ = 2, is non-negative.
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In the first step, (4b) is not used since (σ − 1)/σ = 0. So the contribution is computed
by multiplying each entry in the left mask first with the corresponding entry of the left
stencil and summing the terms, then repeating the process with the right stencil and then
averaging the two sums. This yields, as claimed,

1

2

3

8
β̃ +

1

2

1

4
(
6βi + εi−1βi−1 + εiβi+1

16
+ 2β̃)

≥ 1

16n
(−1 − εi−1 + εi − 2

8
+ 7(

1

4
− εi−1 + εi − 2

32
) ≥ 1

16n
(
3

4
− 2

32
(4 + 7)) > 0.

The negative summands decrease for σ ≤ σ0 and, after iteration σ0, the contribution is
computed by applying the two stencils exclusively to the right mask, yielding

β

2
+

1

16

∑

j

βjβi−j +
2βi

16
≥ 1

16n
(2 + 1 − 2) > 0

since
∑

j βjβi−j = 1
n . Rule (4a’) was introduced to make the contribution of wi non-

negative. Nonnegativity is obvious in step 1 when only the regular rule is applied. In step
2, the contribution is

βi + βi−1

64
+

1

16n

1

2
≥ 0.

Thus, all weights associated with the neighbors of the eon are nonnegative and sum to 1
and all rules form only convex combinations of nodes in the convex hull.

While formally necessary for the convex hull proof, the special rule (4a’) is not men-
tioned in Section 2, since the contribution of a node wi to a node v0 after two subdivision
steps is bounded below by −1

64n and n ≥ 4. Even a major overestimate5 that n/2 nodes are
weighted by the maximal negative factor, their combined contribution is only −1

128 . Only a
dramatically lopsided input mesh would allow this contribution to dominate the contribu-
tions of the other n/2 nodes and push the surface outside the convex hull.

4. IMPLEMENTATION AND EXAMPLES

We implemented 4-3 subdivision to be compatible with future hardware shader support
[Shiue et al. 2003], using a data structure similar to [Peters 2000; Pulli and Segal 1996]:
a connectivity structure that stays fixed during the subdivision plus regular arrays for the
facets whose entries roughly quadruple with each step. In this framework, it is natural to
compute the new direct edge neighbors of the eons first with the regular stencils (1b,2b,3b)
of Section 2 and then blend them with rule (4b). This strategy preserves features modeled
by unequal distribution of neighbors of the eon and results in satisfactory curvature for low
valences n > 3, so that we do not optimize the parameter α as in [Stam and Loop 2003].

The example illustrate that the shapes generated by 4-3 subdivision are remarkably sim-
ilar to their cousins but are superior when it comes to modeling diagonal features thanks to
the switch from ACC to A4.

Figure 19 and Figure 18 show 4-3 subdivision for simple objects with predictable shape,
low valence eons, simple saddles and many transitions between quadrilateral and triangu-
lar facets.
Figure 21 compares 4-3 subdivision with Catmull-Clark, quad-tri subdivision [Stam and

5This is an overestimate since the cos terms cannot all be −1
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Loop 2003] and Loop subdivision. The point of the juxtaposition is that the rough shapes,
top and bottom, are identical. That is, the superior properties of 4-3 subdivision along di-
agonals and at extraordinary points are not paid for by a deterioration in the overall shape.
The drum-shape in Figure 20 is a challenge to schemes without geometry-dependent sten-
cils. Only midedge subdivision [Peters and Reif 1997; Habib and Warren 1999] appears to
preserve the shape along the rim while subdivision schemes with higher smoothness create
an oscillating rim due to the uneven placement of the indirect neighbors of the high-valent
eon. For 4-3 subdivision, this oscillation is both more pronounced and more confined com-
pared to quad-tri subdivision, or Catmull-Clark or Loop on the suitably modified meshes.
The latter export the ripples into the drum’s cylinder. Figure 22, bottom illustrates how the
removal of diagonals can clean up a model. Figure 23 shows how the framework facili-
tates displacement mapping in the spirit of [Lee et al. 2000]. Whereas in [Biermann et al.
2002] the mesh is separated and boundaries are introduced for every feature line, and there
a separate suite of univariate boundary rules is applied, here a single subdivision net and
surface are retained. Figure 24 illustrates the use of semi-smooth and sharp creases when
modeling with 4-3 subdivision.

Fig. 18. Combining quads and triangles allows removing artificial diagonals. (right) High-light lines.

5. SUMMARY

By defining when a subdivision scheme is ‘ripple-free in a direction’, this paper introduced
a notion of shape preservation that is at once modest (insufficient to characterize fairness
of surfaces) and ambitious, in that any stronger demand for shape preservation is likely to
be incompatible with a key asset of regular regions of subdivision surfaces: to be defined
by a finite number of basis functions of finite support.

One can argue that the two diagonals and the coordinates axes are the only relevant grid-
directions to consider. Raising, say every control point at multiples of [ 2

1 ] on a quad grid
(a rook’s move on a chess board) would skip enough nodes in-between to make a designer
expect a ripple in the resulting surface. With the A4 subdivision rules, we have the unique,
3 × 3 footprint scheme that is ripple-free in all four directions and the A3 rules do an
equally good job along triangle directions.
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The quad component of 4-3 subdivision has not before been used and analyzed in detail
despite its small unfactored footprint and its place in the gallery of subdivision algorithms.
We made an effort to analyze it, and the overall scheme, to rigorous standards.
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Fig. 19. 4-3 subdivision: simple shape with eons of low valence and quad to triangle transitions.
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Quad-tri Quad-tri Input Mesh 4-3 4-3

Fig. 20. High valence and low valence eons. The eon at the flat bottom of the drum-shape is the center of
16 triangle facets. This high-valent eon and its 4-valent neighbors cause ripples. (left two) Quad-tri subdivision
spreads these ripples to the faces of the drum shape. This is made visible by the wavy boundary between quad
and triangle regions. (right two) The same boundary is much straighter for 4-3 subdivision. The quad region is
insulated from the ripples at the price of more pronounced oscillations in the triangle region.

CC Loop Quad-Tri

4-3 4-3 4-3

Fig. 21. Comparison of 4-3 Subdivision with Catmull-Clark (CC), Loop and Quad-Tri subdivision.
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Fig. 22. (top and middle) 4-3 subdivision of a complex model. On the left, the images of the original facet
boundaries are drawn to indicate the input quads and triangles. On the right, these lines are removed to fully
uncover the surface. (bottom) Removal of artificial diagonals.
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Fig. 23. Texture-controlled displacement after three steps of subdivision. (top) Catmull-Clark subdivision,
displacement, plus two additional Catmull-Clark subdivision steps. (bottom) 4-3 subdivision using α = 0.6,
displacement, smoothed by two additional 4-3 subdivision steps.

Fig. 24. Creases and semi-smooth creases added to the data of Figure 19.
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